Yielding transitions and grain-size effects in dislocation theory.

نویسنده

  • J S Langer
چکیده

The statistical-thermodynamic dislocation theory developed in previous papers is used here in an analysis of yielding transitions and grain-size effects in polycrystalline solids. Calculations are based on the 1995 experimental results of Meyers, Andrade, and Chokshi [Metall. Mater. Trans. A 26, 2881 (1995)MMTAEB1073-562310.1007/BF02669646] for polycrystalline copper under strain-hardening conditions. The main assertion is that the well-known Hall-Petch effects are caused by enhanced strengths of dislocation sources at the edges of grains instead of the commonly assumed resistance to dislocation flow across grain boundaries. The theory describes rapid transitions between elastic and plastic deformation at yield points; thus it can be used to predict grain-size dependence of both yield stresses and flow stresses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Effects in Dislocation Theory II: Shear Banding and Yielding Transitions

The thermodynamic dislocation theory presented in preceding papers is used here to describe shear-banding instabilities. Central ingredients of the theory are a thermodynamically defined effective configurational temperature, and a formula for the plastic deformation rate determined by thermally activated depinning of entangled dislocations. An important feature of this paper is an interpretati...

متن کامل

Dislocation Bow-Out Model for Yield Stress of Ultra-Fine Grained Materials

A dislocation bow-out model has been developed to explain the strength of ultra-fine grained (UFG) materials with grain size roughly between 20 nm to 500 nm. In the model, perfect dislocations are assumed to be nucleated at grain-boundary sources and bow out between two pinning points on a boundary. Yielding is considered to occur when a dislocation takes a semi-circular shape under applied str...

متن کامل

Stacking fault emission from grain boundaries: Material dependencies and grain size effects

When load is applied to fcc nanograins, leading partial dislocations nucleate at grain boundary steps and propagate into the grain, leaving stacking faults behind. The extent to which these faults expand before a trailing partial is emitted generally does not equal the equilibrium separation distance of the corresponding full dislocation. Here we use a density functional theory – phase field di...

متن کامل

Investigation of extended stacking fault emission from grain boundaries using a density functional theory -informed 3D phase field dislocation dynamics model

As characteristic length scales shrink (<100 nm) in fcc metals, alternative deformation mechanisms not seen in bulk and course-grained material counterparts emerge. In particular in grain sizes on the order of 10s of nanometers, plasticity is mediated by the motion and interaction of partial dislocations and extended stacking faults. Typically, partial dislocations nucleate at grain boundary de...

متن کامل

Limit of Dislocation Density and Ultra-Grain-Refining on Severe Deformation in Iron

It is well-known that severe deformation to metals causes a direct grain refinement of the matrix without special heat-treatments due to the mechanism of dynamic continuous recrystallization (DCR). However, the microstructural revolution during severe deformation is seemed to be different depending on the deformation mode, namely the direction of deformation. In general, multi-directional defor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E

دوره 95 3-1  شماره 

صفحات  -

تاریخ انتشار 2017